271 lines
7.1 KiB
Python
271 lines
7.1 KiB
Python
#!/usr/bin/python
|
||
# coding: utf-8
|
||
|
||
# haacheuur 0.24
|
||
# port industriel de port la nouvelle - couleur - 60cm*30cm
|
||
# image source : pln.jpg
|
||
# image obtenue : pln..20150910-11h59m53s.jpg
|
||
|
||
# pln.png 3936x1024 pix
|
||
|
||
'''
|
||
image input puredata : 16384 width x 768 height
|
||
donc par exemple, pour 3 images :
|
||
3 x 16384 = 49152 pixels en tout
|
||
'''
|
||
|
||
import sys
|
||
import Image
|
||
import random
|
||
import os
|
||
import ImageDraw
|
||
import ImageFont
|
||
import ImageFilter
|
||
from time import gmtime, strftime
|
||
import time
|
||
|
||
|
||
if not len(sys.argv) > 1:
|
||
raise SystemExit("Usage: %s image_source" % sys.argv[0])
|
||
|
||
# modifs du 30/10/2013
|
||
import ImageEnhance
|
||
|
||
#ouverture de l'image source et conversion en mode couleur 1bit
|
||
im1 = Image.open(str(sys.argv[1])).convert('1')
|
||
#im1 = Image.open(str(sys.argv[1])).convert('L')
|
||
#im1 = Image.open(str(sys.argv[1]))
|
||
im2 = im1.copy()
|
||
|
||
#rapport d'allongement de la nouvelle image par rapport à la largeur de l'image originale
|
||
allongement = 8
|
||
|
||
im3 = Image.new("RGBA",(im1.size[0], im1.size[1]))
|
||
im4 = Image.new("RGBA",(im1.size[0]*allongement, im1.size[1]))
|
||
#im4 = Image.new("RGBA",(49152, im1.size[1]))
|
||
|
||
Larg = im1.size[0]
|
||
Haut = im1.size[1]
|
||
import pickle
|
||
|
||
loadfile = False
|
||
|
||
class Sequence:
|
||
def __init__(s):
|
||
randomCoupeHauteur = []
|
||
s.randomCopyPosi =[]
|
||
s.proportions=[]
|
||
s.choix=[]
|
||
s.sizeOutput=None
|
||
s.sizeInput=None
|
||
|
||
"""
|
||
seq = dict()
|
||
seq["randomCoupeHauteur"] = []
|
||
seq["randomCopyPosi"] = []
|
||
seq["proportions"] = []
|
||
seq["choix"] = []
|
||
seq["sizeOutput"]= im4.size
|
||
seq["sizeInput"] = im1.size
|
||
"""
|
||
|
||
if loadfile:
|
||
seq=pickle.load(open("test.pickle"))
|
||
|
||
else :
|
||
seq=Sequence()
|
||
|
||
for i in range(1):
|
||
|
||
# constitution de la liste des tranches horizontales
|
||
# genre comme si qu'on avait un 16 pistes :)
|
||
# nombre aleatoire compris dans les limites de l'image
|
||
def randHaut():
|
||
return random.randint(0, im1.size[1]/8)*8
|
||
|
||
if loadfile:
|
||
randomCoupeHauteur = seq.randomCoupeHauteur
|
||
|
||
else:
|
||
randomCoupeHauteur = [0, \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
randHaut(),randHaut(),randHaut(),randHaut(), \
|
||
im1.size[1]]
|
||
# rangement des valeurs des plus petites au plus grandes
|
||
randomCoupeHauteur.sort()
|
||
seq.randomCoupeHauteur = randomCoupeHauteur
|
||
|
||
# les hachures
|
||
def Hacheur(haut, bas) :
|
||
|
||
n=0
|
||
i=0
|
||
#!!!!!!!!!!
|
||
while n<im4.size[0] :
|
||
if loadfile:
|
||
proportions = seq.proportions
|
||
choix_rnd = seq.choix[i]
|
||
randomCopyPosi = seq.randomCopyPosi[i]
|
||
else:
|
||
|
||
'''
|
||
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168
|
||
'''
|
||
|
||
#proportions = [(160,6),(120,4),(120,8),(80,16),(60,16),(20,32),(8,24),(8,16),(5,64),(3,24),(2,24),(1,256),(1,128),(1,64),(1,32),(1,16),(1,8)]
|
||
#proportions = [(160,6),(120,4),(120,8),(80,16),(60,16),(20,32),(8,24),(8,16),(5,64),(3,24),(2,24),(1,256),(1,128),(1,64),(1,32),(1,16),(1,8)]
|
||
#proportions = [(1280,1),(800,1),(800,2),(640,1),(640,2),(640,4),(320,4),(320,2),(320,1),(160,1),(120,2),(120,3),(80,6),(64,12),(64,6),(32,4),(32,8),(32,16),(32,32),(32,64)]
|
||
|
||
proportions = [(256,1),(160,1),(120,2),(120,3),(80,6),(64,12),(24,18),(8,24),(8,16)]
|
||
|
||
#proportion pln pour output final avec puredata/gem (decalage phase 32pix)
|
||
|
||
'''
|
||
proportions = [ (768,2),\
|
||
(512,4),\
|
||
(256,8),\
|
||
(128,4),(128,16),\
|
||
(64,4),(64,8),(64,16),\
|
||
(32,8),(32,16),(32,32),(32,32),(32,64),(32,128),\
|
||
(16,1),(16,4),(16,16),(16,64)]
|
||
'''
|
||
#proportions = [(512,1),(256,2),(128,4),(64,8),(64,4),(32,16),(32,32),(32,8),(16,8),(16,32),(8,64),(8,32),(8,16)]
|
||
#proportions = [(32,1),(32,2),(32,3),(32,4),(32,5),(32,6),(32,8),(32,12),(32,16),(32,24),(32,32),(32,64)]
|
||
|
||
seq.proportions = proportions
|
||
#proportions = seq.proportions[]
|
||
choix_rnd = random.randint(0, len(proportions)-1)
|
||
#choix_rnd = random.randint(0, len(proportions)-1)
|
||
seq.choix.append(choix_rnd)
|
||
|
||
largeur = proportions[choix_rnd][0]
|
||
|
||
# positionnement de la copie, aleatoirement, entre 0 et la largeur totale de l'image
|
||
randomCopyPosi = random.randint(0, (im1.size[0]-largeur))
|
||
#randomCopyPosi = seq.randomCopyPosi
|
||
seq.randomCopyPosi.append(randomCopyPosi)
|
||
|
||
i+=1
|
||
|
||
# tirage au sort
|
||
|
||
#seq["choix"].append(choix_rnd)
|
||
|
||
# assignation des valeurs (paires) finales choisies
|
||
largeur = proportions[choix_rnd][0]
|
||
repeat = proportions[choix_rnd][1]
|
||
|
||
#seq["randomCopyPosi"].append(randomCopyPosi)
|
||
|
||
cx1 = randomCopyPosi
|
||
cx2 = randomCopyPosi + largeur
|
||
# decoupage du sample
|
||
im3 = im2.crop((cx1,haut,cx2,bas))
|
||
|
||
print "im3 = im2.crop : "+str(im3.size)
|
||
|
||
draw = ImageDraw.Draw(im4)
|
||
|
||
loop = 0
|
||
|
||
pixelSizeList = [1,1,1,1,1,1,1,1,4,8]
|
||
#pixelSizeList = [1]
|
||
pixelSizeIndex = random.randint(0,len(pixelSizeList)-1)
|
||
pixelSize = pixelSizeList[pixelSizeIndex]
|
||
'''
|
||
print " pixelSize = "+str(pixelSize)
|
||
'''
|
||
|
||
''' COLLAGE DU SAMPLE
|
||
'''
|
||
while loop<repeat:
|
||
px1 = n
|
||
px2 = n + largeur
|
||
|
||
draw = ImageDraw.Draw(im3)
|
||
|
||
''' PIXELISATION
|
||
'''
|
||
|
||
im3 = im3.resize((im3.size[0]/pixelSize, im3.size[1]/pixelSize), Image.NEAREST)
|
||
im3 = im3.resize((im3.size[0]*pixelSize, im3.size[1]*pixelSize), Image.NEAREST)
|
||
|
||
'''
|
||
print "im3.size="+str(im3.size)
|
||
print "im4.size="+str(im4.size)
|
||
'''
|
||
|
||
#lignes colorées de 1 pix
|
||
draw.line((im3.size[0]-1, 0, im3.size[0]-1, im3.size[1]-1), fill="rgb(255,255,255)")
|
||
|
||
im4.paste(im3, (px1, haut, px2, bas))
|
||
|
||
n = n + largeur
|
||
loop = loop + 1
|
||
|
||
''' OPTIONS
|
||
'''
|
||
def TrancheHorizontale() :
|
||
# tirage au hasard de la bande copiee
|
||
pos = random.randint(0, im1.size[1]-im1.size[1]/20)
|
||
# copiage
|
||
im5 = im2.crop((0,pos,im1.size[0],pos+im1.size[1]/20))
|
||
|
||
# le soulignage en blanc
|
||
draw = ImageDraw.Draw(im5)
|
||
draw.line((0, im5.size[1]-1, im5.size[0], im5.size[1]-1), fill="black")
|
||
draw.line((0, 1, im5.size[0], 1), fill="black")
|
||
|
||
# collage
|
||
im4.paste(im5, (0,pos,im1.size[0],pos+im1.size[1]/20))
|
||
|
||
# HAACHEUUR
|
||
for j in range(len(randomCoupeHauteur)-1):
|
||
Hacheur(randomCoupeHauteur[j], randomCoupeHauteur[j+1])
|
||
|
||
''' SAUVEGARDE
|
||
'''
|
||
|
||
# CTRL + S
|
||
#chemin du script : scriptpy = sys.argv[0]
|
||
#chemin de l'image : str(sys.argv[1])
|
||
scriptpy = str(sys.argv[1])
|
||
script = scriptpy[:-3]
|
||
n = "%05d" % i
|
||
im4.save(script+"."+n+"_"+strftime("%Y%m%d-%Hh%Mm%Ss", gmtime())+".png",'PNG', quality=100)
|
||
pickle.dump(seq, open("test.pickle","w"))
|
||
|
||
#print script+"."+str(i)+"_"+strftime("%Y%m%d-%Hh%Mm%Ss", gmtime())+".jpg"
|
||
#millis = int(round(time.time() * 1000))
|
||
#print "millis-secondes : "+str(millis)
|
||
|
||
|
||
#obtenir les valeurs RGB des pixels de l'image
|
||
'''
|
||
from PIL import Image
|
||
|
||
im = Image.open('test.png')
|
||
pixels = list(im.getdata())
|
||
width, height = im.size
|
||
|
||
pixels = [pixels[i * width:(i + 1) * width] for i in xrange(height)]
|
||
|
||
for r in range(0, height-1) :
|
||
print "pixels = "+str(pixels[r])
|
||
|
||
print " "
|
||
print "len(pixels) = "+str(len(pixels))
|
||
print "width = "+str(width)
|
||
print "height = "+str(height)
|
||
print " "
|
||
|
||
#tintin = im.tostring( "raw", "RGBA", 0, -1)
|
||
#print "tostring = "+tintin
|
||
'''
|