2022-02-13 07:00:57 +11:00
|
|
|
module fraktals
|
|
|
|
implicit none
|
|
|
|
contains
|
|
|
|
|
|
|
|
!-----------------------------------------------------
|
2022-02-13 09:27:59 +11:00
|
|
|
subroutine simple_julia(pic, cx, cy, maxiter)
|
2022-02-13 07:00:57 +11:00
|
|
|
implicit none
|
|
|
|
integer, intent(inout), dimension (:,:) :: pic
|
|
|
|
real, intent(in) :: cx, cy
|
2022-02-13 09:27:59 +11:00
|
|
|
integer, intent(in) :: maxiter
|
2022-02-13 07:00:57 +11:00
|
|
|
|
|
|
|
integer :: ix, iy, width, height
|
|
|
|
real :: fx, fy
|
|
|
|
complex :: Z, C
|
2022-02-13 09:27:59 +11:00
|
|
|
integer :: iter
|
2022-02-15 00:15:10 +11:00
|
|
|
logical :: over_iter
|
2022-02-13 07:00:57 +11:00
|
|
|
|
|
|
|
width = ubound(pic, 1)
|
|
|
|
height = ubound(pic, 2)
|
|
|
|
|
|
|
|
C = complex(cx, cy)
|
2022-02-15 00:15:10 +11:00
|
|
|
print *, "Const = ", C
|
2022-02-13 07:00:57 +11:00
|
|
|
|
|
|
|
do ix = 1, width
|
|
|
|
fx = (float(ix) / (float(width)/4.0) - 2.0)
|
|
|
|
do iy = 1, height
|
|
|
|
fy = (float(iy) / (float(height)/4.0) - 2.0)
|
|
|
|
|
|
|
|
! ------ traitement du pixel
|
2022-02-15 00:15:10 +11:00
|
|
|
iter = 0 ; over_iter = .FALSE.
|
2022-02-13 07:00:57 +11:00
|
|
|
Z = complex(fx, fy)
|
2022-02-15 00:15:10 +11:00
|
|
|
do while (modulus2(Z) .LT. 4.0)
|
|
|
|
|
2022-02-13 07:00:57 +11:00
|
|
|
Z = (Z * Z) + C
|
|
|
|
iter = iter + 1
|
|
|
|
|
2022-02-15 00:15:10 +11:00
|
|
|
if (iter .GE. maxiter) then
|
|
|
|
over_iter = .TRUE.
|
|
|
|
exit
|
|
|
|
endif
|
2022-02-13 07:00:57 +11:00
|
|
|
|
2022-02-15 00:15:10 +11:00
|
|
|
end do
|
2022-02-13 07:00:57 +11:00
|
|
|
|
2022-02-15 00:15:10 +11:00
|
|
|
if (over_iter) then
|
|
|
|
pic(ix, iy) = 0
|
|
|
|
else
|
|
|
|
pic(ix, iy) = iter
|
|
|
|
endif
|
2022-02-13 07:00:57 +11:00
|
|
|
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
2022-02-15 00:15:10 +11:00
|
|
|
end subroutine simple_julia
|
|
|
|
!-----------------------------------------------------
|
2022-02-16 10:18:35 +11:00
|
|
|
!
|
|
|
|
! d'après les pages 91/92 du livre de Roger T Stevens
|
|
|
|
! "Fractal programming in C"
|
|
|
|
!
|
2022-02-15 00:15:10 +11:00
|
|
|
subroutine pickover_0(pic, count)
|
|
|
|
implicit none
|
|
|
|
integer, intent(inout), dimension (:,:) :: pic
|
|
|
|
integer, intent(in) :: count
|
|
|
|
|
|
|
|
double precision :: xa, ya, za, xb, yb, zb
|
|
|
|
double precision :: ka, kb, kc, kd
|
2022-02-16 10:18:35 +11:00
|
|
|
integer :: i, w, h, px, py
|
2022-02-15 00:15:10 +11:00
|
|
|
|
|
|
|
ka = 2.24 ; kb = 0.43 ; kc = -0.65 ; kd = -2.43
|
|
|
|
xa = 0.00 ; ya = 0.00 ; za = 0.0
|
|
|
|
|
2022-02-16 10:18:35 +11:00
|
|
|
w = ubound(pic, 1)
|
|
|
|
h = ubound(pic, 2)
|
2022-02-15 00:15:10 +11:00
|
|
|
|
|
|
|
do i=1, count
|
|
|
|
|
|
|
|
xb = sin(ka*ya) - za*cos(kb*xa)
|
|
|
|
yb = za*sin(kc*xa) - cos(kd*ya)
|
|
|
|
zb = sin(xa)
|
|
|
|
|
2022-02-16 10:18:35 +11:00
|
|
|
px = (xb * (w/4.05)) + (w / 2)
|
|
|
|
py = (yb * (h/4.05)) + (h / 2)
|
|
|
|
|
|
|
|
pic(px, py) = 200 ! WARNING COREDUMP
|
2022-02-15 00:15:10 +11:00
|
|
|
|
2022-02-16 10:18:35 +11:00
|
|
|
print *, xb, yb, zb
|
|
|
|
|
2022-02-15 00:15:10 +11:00
|
|
|
xa = xb ; ya = yb ; za = zb
|
|
|
|
|
|
|
|
enddo
|
|
|
|
|
|
|
|
end subroutine pickover_0
|
2022-02-13 07:00:57 +11:00
|
|
|
!-----------------------------------------------------
|
2022-02-15 00:15:10 +11:00
|
|
|
! -- some support functions --
|
|
|
|
!-----------------------------------------------------
|
|
|
|
|
2022-02-13 07:00:57 +11:00
|
|
|
function dist0 (x, y)
|
|
|
|
implicit none
|
|
|
|
real, intent(in) :: x, y
|
|
|
|
real :: dist0
|
|
|
|
dist0 = ( x*x + y*y )
|
|
|
|
end function
|
|
|
|
|
|
|
|
!-----------------------------------------------------
|
|
|
|
function modulus2(pt)
|
|
|
|
implicit none
|
|
|
|
complex, intent(in) :: pt
|
|
|
|
real :: modulus2
|
|
|
|
modulus2 = real(pt)*real(pt) + imag(pt)*imag(pt)
|
|
|
|
end
|
|
|
|
!-----------------------------------------------------
|
|
|
|
|
|
|
|
end module fraktals
|